流入河川の状況

セシウム134＋137合計値 2011年9月
1年後の変化

放射性セシウムBq/kg

y = 828.14x^{-1.119}
R^2 = 0.7379

y = 3690.7x^{1.528}
R^2 = 0.8561

2011年9月

2012年9月
放射性セシウム変動傾向

<table>
<thead>
<tr>
<th>12河川平均値</th>
<th>2011.9</th>
<th>2012.2</th>
<th>2012.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>セシウム134</td>
<td>1</td>
<td>0.64</td>
<td>0.68</td>
</tr>
<tr>
<td>セシウム137</td>
<td>1</td>
<td>0.82</td>
<td>0.95</td>
</tr>
<tr>
<td>セシウム計</td>
<td>1</td>
<td>0.74</td>
<td>0.83</td>
</tr>
</tbody>
</table>

流域面積×濃度

<table>
<thead>
<tr>
<th></th>
<th>2011.9</th>
<th>2012.2</th>
<th>2012.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>セシウム134</td>
<td>1</td>
<td>0.94</td>
<td>1.09</td>
</tr>
<tr>
<td>セシウム137</td>
<td>1</td>
<td>1.19</td>
<td>1.48</td>
</tr>
<tr>
<td>セシウム計</td>
<td>1</td>
<td>1.08</td>
<td>1.30</td>
</tr>
</tbody>
</table>
流入河川の総括

1 小河川（特に都市型河川）
流域⇒河川、河川⇒霞ヶ浦が進行

2 大河川
霞ヶ浦への流出が継続し
河川内への蓄積も高まっている（とみられる）

3 （河川底泥濃度）×（底泥濃度）＝1.3倍増
霞ヶ浦の底泥（Bq/kg乾重）

<table>
<thead>
<tr>
<th>年月</th>
<th>2011.9</th>
<th>2012.2</th>
<th>2012.6</th>
<th>2012.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>玉造沖</td>
<td>330</td>
<td>1300</td>
<td>228</td>
<td>201</td>
</tr>
<tr>
<td>掛馬</td>
<td>340</td>
<td>440</td>
<td>610</td>
<td>430</td>
</tr>
<tr>
<td>湖心</td>
<td>221</td>
<td>900</td>
<td>178</td>
<td>151</td>
</tr>
<tr>
<td>麻生沖</td>
<td>330</td>
<td>250</td>
<td>183</td>
<td>202</td>
</tr>
<tr>
<td>釜谷</td>
<td>130</td>
<td>1000</td>
<td>510</td>
<td>520</td>
</tr>
<tr>
<td>神宮橋</td>
<td>220</td>
<td>217</td>
<td>109</td>
<td>103</td>
</tr>
<tr>
<td>外浪逆</td>
<td>184</td>
<td>143</td>
<td>110</td>
<td>97</td>
</tr>
<tr>
<td>息栖</td>
<td>290</td>
<td>205</td>
<td>168</td>
<td>152</td>
</tr>
</tbody>
</table>
霞ヶ浦底泥（自主観測）

<table>
<thead>
<tr>
<th>区分</th>
<th>自主観測</th>
<th>環境省観測</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cs計</td>
<td>Cs134</td>
</tr>
<tr>
<td>玉造沖</td>
<td>929</td>
<td>334</td>
</tr>
<tr>
<td>掛馬</td>
<td>1226</td>
<td>479</td>
</tr>
<tr>
<td>湖心</td>
<td>1051</td>
<td>420</td>
</tr>
<tr>
<td>麻生沖</td>
<td>721</td>
<td>264</td>
</tr>
<tr>
<td>釜谷</td>
<td>421</td>
<td>150</td>
</tr>
</tbody>
</table>
1. 放射性物質沈殿堆積

 流入

 湖水面

 逆水門開鎖

 放射性物質(沈殿)

2. 放射性物質浮上懸濁
 （西〜北風吹送時）

 流入

 湖水面

 逆水門開鎖

 放射性物質懸濁

3. 逆水門操作による水位低下
 放射性物質の排出

 海水面低下（大潮時）

 水位低下

 水位管理による放射性物質流出

4. 湖水面上の回復
 利根機場等からの補給

 逆水門開鎖

 水の補給による水位回復

 糜濁放射性物質の希釈

5. 湖内放射性物質の低減

 堆積放射性物質の減少

 流入
放射性物質相対濃度%

懸濁度25%
懸濁度50%
懸濁度75%
懸濁度100%

常陸川水門操作回数（1回：大潮時6日間の順流開放）
討論の結果

問題点
1 下流・海への放出は、許されない
2 自然に解決するから放置すればよい
3 湖・河川の底泥浚渫がよい

今後の対応：流域・湖の両視点から以下を推進
1 調査研究を行う　2 調査研究の公開
3 地域における合意形成